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Abstract

A theoretical analysis of the effect on the critical exponents of measurements along near-
critical isochore and isotherm paths was performed.  The uncertainty in the specific heat
exponent, α  and compressibility exponents, γ and δ along these near critical paths was
determined.  The construction of a specific heat cryostat was completed during the last year.  At
this time, we are in the middle of a long duration low-temperature run to evaluate the capability
of this experimental system.  Results of preliminary studies of the drift and pulse techniques for
measuring the specific heat at constant volume are presented.  The required temperature
resolution for the microgravity experiment was demonstrated.

Introduction

The acronym MISTE (Microgravity Scaling Theory Experiment) has been given to the flight
definition experiment to test the scaling hypothesis near the liquid-gas critical point of 3He in a
microgravity environment.  This proposed experiment [1] will determine the critical exponents
α , γ, and δ along the critical isochore and critical isotherm by performing a set of precision
measurements of the specific heat at constant volume, Cv, and the isothermal compressibility,
κT.  A stringent test of the theoretical predictions for the measured critical exponents as well as
the Renormalization Group scaling hypothesis between exponents will be performed.

Accuracy in Determining Critical Exponents

The accuracy in determining critical exponents strongly depends on the precise experimental
path used to perform the measurements.  We have analyzed the effect of a near critical isochore
or isotherm path on the measurement of the critical exponents α , γ and δ in a zero gravity
environment.  The desired precision in the specific heat, Cv, and compressibility, κT, along a
near critical isochore path is 1% down to a reduced temperature of t = 10-7.  A similar 1%
precision is the goal for the compressibility along the critical isotherm to a reduced density of 5 x
10-4.  Calculations were performed using the Ginsburg-Landau-Wilson Hamiltonian for the
liquid-gas universality class O(1).  The critical exponents along critical paths used in the
calculation are those obtained from High Temperature Expansions [2].  The predictions
presented here were also shown to be consistent with calculations using the restricted cubic
model [3].



Figure 1a shows the expected asymptotic deviation in the specific heat at constant volume,
Cv, for measurements at varying reduced temperature, t = T/Tc -1, along the near critical
densities ∆ρ = ρ/ρc - 1 = 5 x 10-4 and 1 x 10-3.  The deviation of Cv from critical isochore
behavior is shown in Fig. 1b.  One can obtain an effective critical exponent from a fit of the
theoretically generated “data” to the expected critical asympotic power law expression.  Using
this fitting procedure on the “data” in Fig. 1a, the critical exponent α  is predicted to shift by -
0.31 and -1.2% for isochores that are 0.05 and 0.1% away from the critical isochore respectively.
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Fig. 1.  Calculation of effective critical exponent α  for Cv
along near critical isochore paths.

Similar calculations for the isothermal compressibility, κT, along near critical isochores are
shown in Fig. 2.  The deviation of the critical exponent γ from critical isochore behavior for
reduced densities of 0.03 and 0.05% is predicted to be -0.11 and -0.31% respectively.  These
results for Cv and κT show that in order to obtain an experimental accuracy of 1% in the critical
exponents α  and γ, deviations from the critical isochore must be less than 0.1%.

The calculations for the linear susceptibility, χT, which is related to the isothermal
compressibility, κT, by the expression χT =  ρ2κT, are shown along near critical isotherms in Fig.
3.  For this case, because the critical exponent δ is so large, δ = 4.8, significant errors in the
exponent can occur even for very small deviations from the critical isotherm.  The effective
change in the critical exponent δ from critical isotherm behavior for reduced temperatures t = 5 x
10-9 and 5 x 10-8 is predicted to be 0.39 and 0.64% respectively.  These results show that high
resolution thermometry is required to obtain an experimental accuracy of 1% in the critical
exponent δ.
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Fig. 2.  Calculation of effective critical exponent γ for the
linear susceptibility, χT, along near critical
isochore paths.
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Fig. 3.  Calculation of effective critical exponent δ for χT

along near critical isotherm paths.



Fig. 4.  Schematic showing heat transfer mechanisms
between sample cell and shield stage.

The potential advantage of the drift method is the ability to perform Cv measurements upon
cooling slowly through the critical point [4].  Figure 4 shows a schematic of the MISTE specific
heat cell and surrounding shield stage.  The main heat transfer mechanisms are conduction and
radiation.  The conduction path is primarily through the stainless steel supports between the cell
and shield stage.  Assuming a temperature difference ∆T = (T0 - T1) between the cell and shield,
the conduction thermal resistance, RC, is given by

R T T dQ dtC C= −( ) ( )0 1 / /  , (1)

where QC is the heat conducted away from the cell.  For small temperature differences (∆T/Tc
<<1), one can similarly define a radiation thermal resistance Rr by

R T T dQ dtr r= −( ) ( )0 1 / /  , (2)

with Qr being the radiation energy leaving the cell.  Using these thermal resistance definitions,
the total heat capacity of the cell can be determined from the expression

C T T dT dt R RT C r= − −( ) ( )[ ] +[ ]0 1 0 1 1/ / / /  . (3)

It is assumed that the thermal resistances can be considered constant throughout the critical
region.  Thus, the precision in the measured total heat capacity is primarily dependent on the
precision in measuring the cell and shield temperatures.  At this time, the specific heat cell
temperature is measured using a conventionally designed GdCl3 high resolution thermometer
(HRT) while a prototype miniature GdCl3 HRT measures the shield temperature [5].
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Fig. 5.  Typical cooling drift experiment.

A typical cooling drift experiment slightly off the critical isochore is shown in Fig. 5.  For
this run, the shield temperature was held constant at ≈ 2 mK below the transition and the cooling
rate was ≈ 150 µK/hr.  The changes in slope, indicated by the arrows, define the gravity affected
region (t ≈ 6 x 10-4) near the phase transition.  In a microgravity environment, this gravity
induced smearing of the transition will be significantly reduced allowing more accurate
measurements very near the transition.  The inserts in the figure show the degree of stability and
temperature resolution attained at the shield and cell stages.  The shield temperature data shown
here, which had no filtering, demonstrate that the shield stage could be held constant to much
better than 10 nK for extended periods of time.  The cell temperature data, with 100Hz filtering,
show short term control to better that 1 nK.  While further effort is required to develop the drift
technique for measurements near the 3He critical point, the inserts in Fig. 5 demonstrate that the
temperature resolution required for the MISTE precision specific heat measurements has been
attained.

Preliminary specific heat measurements have also been performed using the pulse technique.
Figure 6 shows a sample heat pulse measurement at a reduced temperature of 3.5 x 10-4.  The
sample cell was drifting upward in temperature at a rate of ≈ 3 nK/sec.  The temperature rise was
determined by fitting the temperature versus time data above and below the pulse to a straight
line.  The uncertainty in the temperature difference ∆T, between the drift rates above and below
the pulse was ≈ 0.3%.  This temperature resolution is sufficient for accurate pulse measurements
to t ≈ 10-7.
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Fig. 6.  Typical heat pulse measurement in the critical region.

Conclusions

We have performed the first extensive low temperature evaluation of the ground-based
MISTE specific heat sample cell.  Preliminary measurements of the drift and pulse specific heat
techniques have demonstrated that the required temperature resolution for a microgravity
experiment were obtained.  The miniature GdCl3 HRT provided the temperature resolution
required for the shield stage.  In the future, a similar miniature HRT will be tested on the sample
cell.  Replacing the conventional HRT design with a miniature unit will significantly reduce the
volume and HRT calibration requirements of a future microgravity experiment.  Future low
temperature studies in the MISTE cell will evaluate electrostrictive techniques for measuring the
isothermal compressibility in bulk [1] and finite size environments [6-9].

Theoretical estimates of the specific heat at constant volume and the linear susceptibility
measured along near critical paths were also calculated.  The maximum deviation from a critical
isochore or critical isotherm path that will still permit 1% precision in the measured critical
exponents α , γ and δ was determined by fitting the theoretically generated “data” to the expected
critical asympotic power law expression.
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